Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1347259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318168

RESUMO

Introduction: Eosinophilic esophagitis (EoE) is a chronic, inflammatory, antigen-driven disease of the esophagus. Tissue EoE pathology has previously been extensively characterized by novel transcriptomics and proteomic platforms, however the majority of surface marker determination and screening has been performed in blood due to mucosal tissue size limitations. While eosinophils, CD4+ T cells, mast cells and natural killer (NK) T cells were previously investigated in the context of EoE, an accurate picture of the composition of peripheral blood mononuclear cells (PBMC) and their activation is missing. Methods: In this study, we aimed to comprehensively analyze the composition of peripheral blood mononuclear cells and their activation using surface marker measurements with multicolor flow cytometry simultaneously in both blood and mucosal tissue of patients with active EoE, inactive EoE, patients with gastroesophageal reflux disease (GERD) and controls. Moreover, we set out to validate our data in co-cultures of PBMC with human primary esophageal epithelial cells and in a novel inducible mouse model of eosinophilic esophagitis, characterized by extensive IL-33 secretion in the esophagus. Results: Our results indicate that specific PBMC populations are enriched, and that they alter their surface expression of activation markers in mucosal tissue of active EoE. In particular, we observed upregulation of the immunomodulatory molecule CD38 on CD4+ T cells and on myeloid cells in biopsies of active EoE. Moreover, we observed significant upregulation of PD-1 on CD4+ and myeloid cells, which was even more prominent after corticosteroid treatment. With co-culture experiments we could demonstrate that direct cell contact is needed for PD-1 upregulation on CD4+ T cells. Finally, we validated our findings of PD-1 and CD38 upregulation in an inducible mouse model of EoE. Discussion: Herein we show significant alterations in the PBMC activation profile of patients with active EoE in comparison to inactive EoE, GERD and controls, which could have potential implications for treatment. To our knowledge, this study is the first of its kind expanding the multi-color flow cytometry approach in different patient groups using in vitro and in vivo translational models.


Assuntos
Enterite , Eosinofilia , Esofagite Eosinofílica , Gastrite , Refluxo Gastroesofágico , Animais , Camundongos , Humanos , Esofagite Eosinofílica/diagnóstico , Leucócitos Mononucleares/metabolismo , Receptor de Morte Celular Programada 1 , Proteômica , Mucosa/metabolismo , Refluxo Gastroesofágico/diagnóstico , Refluxo Gastroesofágico/patologia
2.
Antioxidants (Basel) ; 12(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37891870

RESUMO

Macrophage polarization is highly involved in autoimmunity. M1 polarized macrophages drive inflammation and undergo metabolic reprogramming, involving downregulation of mitochondrial energy production and acceleration of glycolysis. Macrophage migration inhibitory factor (MIF), an enigmatic tautomerase (ketonase and enolase), was discovered to regulate M1 polarization. Here, we reveal that KRP-6, a potent and highly selective MIF ketonase inhibitor, reduces MIF-induced human blood eosinophil and neutrophil migration similarly to ISO-1, the most investigated tautomerase inhibitor. We equally discovered that KRP-6 prevents M1 macrophage polarization and reduces ROS production in IFN-γ-treated cells. During metabolic reprogramming, KRP-6 improved mitochondrial bioenergetics by ameliorating basal respiration, ATP production, coupling efficiency and maximal respiration in LPS+IFN-γ-treated cells. KRP-6 also reduced glycolytic flux in M1 macrophages. Moreover, the selective MIF ketonase inhibitor attenuated LPS+IFN-γ-induced downregulation of PARP-1 and PARP-2 mRNA expression. We conclude that KRP-6 represents a promising novel therapeutic compound for autoimmune diseases, which strongly involves M1 macrophage polarization.

3.
Clin Transl Allergy ; 13(3): e12231, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36973961

RESUMO

BACKGROUND: The specificity of extract-based pollen allergy diagnosis is decreased due to cross-reactivity via cross-reactive carbohydrate determinants (CCDs) or panallergens such as profilins or polcalcins. This study aimed to explore the prevalence of sensitization to seasonal extracts, CCDs, profilin and polcalcin and investigate the sensitivity and specificity of seasonal molecular allergy diagnosis (MAD) using commercially available test methods. METHODS: 2948 patients were screened for specific immunoglobulin E to ash, birch, mugwort, ragweed and timothy grass pollen extracts and grouped according to the number of positive tests (1-5). 100 patients from each group and a control group were randomly selected to calculate the prevalence of CCD and panallergen sensitization. With 742 patients, sensitivity and specificity of MAD (Alt a 1, Fra/Ole e 1, Bet v 1, Phl p 1, Art v 1, and Amb a 1) was determined. RESULTS: 1627 patients (55.2%) were positive to at least one, and 1002 patients (34.0%) were positive to multiple of the five pollen allergens investigated; 18.5% of the pollen-sensitized patients had sensitization to CCDs or panallergens. Specifically, sensitization to CCDs, profilins, and polcalcins was observed in 8.7%, 10.9%, and 2.9% of these patients, respectively. The sensitivity of MAD was high, with sensitivities between 96.2% and 100% using ImmunoCAP and 91.5% and 100% using ALEX2 . Specificity was 100% for both assays. CONCLUSIONS: Due to cross-reactivity, about one-fifth of pollen-sensitized patients is at risk of misdiagnosis. However, MAD is sensitive, specific and helps to avoid misdiagnosis and select primary allergen sources for immunotherapy.

4.
Allergy ; 77(3): 870-882, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34309864

RESUMO

BACKGROUND: High-altitude therapy has been used as add-on treatment for allergic asthma with considerable success. However, the underlying mechanisms remain unclear. In order to investigate the possible therapeutic effects of high-altitude therapy on allergic asthma, we utilized a new in vivo mouse model. METHODS: Mice were treated with house dust mite (HDM) extract over 4 weeks and co-exposed to 10% oxygen (Hyp) or room air for the final 2 weeks. Experimental asthma was assessed by airway hyper-responsiveness, mucus hypersecretion and inflammatory cell recruitment. Isolated immune cells from mouse and allergic patients were stimulated in vitro with HDM under Hyp and normoxia in different co-culture systems to analyse the adaptive immune response. RESULTS: Compared to HDM-treated mice in room air, HDM-treated Hyp-mice displayed ameliorated mucosal hypersecretion and airway hyper-responsiveness. The attenuated asthma phenotype was associated with strongly reduced activation of antigen-presenting cells (APCs), effector cell infiltration and cytokine secretion. In vitro, hypoxia almost completely suppressed the HDM-induced adaptive immune response in both mouse and human immune cells. While hypoxia did not affect effector T-cell responses per-se, it interfered with antigen-presenting cell (APC) differentiation and APC/effector cell crosstalk. CONCLUSIONS: Hypoxia-induced reduction in the Th2-response to HDM ameliorates allergic asthma in vivo. Hypoxia interferes with APC/T-cell crosstalk and confers an unresponsive phenotype to APCs.


Assuntos
Asma , Oxigênio , Alérgenos , Animais , Modelos Animais de Doenças , Humanos , Hipóxia , Imunidade Humoral , Camundongos , Oxigênio/farmacologia , Pyroglyphidae , Células Th2
5.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769126

RESUMO

Acute respiratory inflammation, most commonly resulting from bacterial or viral infection, is one of the leading causes of death and disability worldwide. The inflammatory lipid mediator prostaglandin D2 (PGD2) and its rate-limiting enzyme, hematopoietic PGD synthase (hPGDS), are well-known drivers of allergic pulmonary inflammation. Here, we sought to investigate the source and role of hPGDS-derived PGD2 in acute pulmonary inflammation. Murine bronchoalveolar monocytes/macrophages from LPS- but not OVA-induced lung inflammation released significant amounts of PGD2. Accordingly, human monocyte-derived macrophages expressed high basal levels of hPGDS and released significant levels of PGD2 after LPS/IFN-γ, but not IL-4 stimulation. Human peripheral blood monocytes secreted significantly more PGD2 than monocyte-derived macrophages. Using human precision-cut lung slices (PCLS), we observed that LPS/IFN-γ but not IL-4/IL-13 drive PGD2 production in the lung. HPGDS inhibition prevented LPS-induced PGD2 release by human monocyte-derived macrophages and PCLS. As a result of hPGDS inhibition, less TNF-α, IL-6 and IL-10 could be determined in PCLS-conditioned medium. Collectively, this dataset reflects the time-dependent release of PGD2 by human phagocytes, highlights the importance of monocytes and macrophages as PGD2 sources and suggests that hPGDS inhibition might be a potential therapeutic option for acute, non-allergic lung inflammation.


Assuntos
Lesão Pulmonar Aguda/imunologia , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Macrófagos Alveolares/metabolismo , Monócitos/metabolismo , Prostaglandina D2/metabolismo , Animais , Humanos , Camundongos
6.
Biochem Pharmacol ; 192: 114690, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274356

RESUMO

BACKGROUND: Eosinophilic asthma is increasingly recognized as one of the most severe and difficult-to-treat asthma subtypes. The JAK/STAT pathway is the principal signaling mechanism for a variety of cytokines and growth factors involved in asthma. However, the direct effect of JAK inhibitors on eosinophil effector function has not been addressed thus far. OBJECTIVE: Here we compared the effects of the JAK1/2 inhibitor baricitinib and the JAK3 inhibitor tofacitinib on eosinophil effector function in vitro and in vivo. METHODS: Differentiation of murine bone marrow-derived eosinophils. Migratory responsiveness, respiratory burst, phagocytosis and apoptosis of human peripheral blood eosinophils were assessed in vitro. In vivo effects were investigated in a mouse model of acute house dust mite-induced airway inflammation in BALB/c mice. RESULTS: Baricitinib more potently induced apoptosis and inhibited eosinophil chemotaxis and respiratory burst, while baricitinib and tofacitinib similarly affected eosinophil differentiation and phagocytosis. Of the JAK inhibitors, oral application of baricitinib more potently prevented lung eosinophilia in mice following allergen challenge. However, both JAK inhibitors neither affected airway resistance nor compliance. CONCLUSION: Our data suggest that the JAK1/2 inhibitor baricitinib is even more potent than the JAK3 inhibitor tofacitinib in suppressing eosinophil effector function. Thus, targeting the JAK1/2 pathway represents a promising therapeutic strategy for eosinophilic inflammation as observed in severe eosinophilic asthma.


Assuntos
Azetidinas/uso terapêutico , Eosinofilia/tratamento farmacológico , Eosinófilos/efeitos dos fármacos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/uso terapêutico , Purinas/uso terapêutico , Pirazóis/uso terapêutico , Sulfonamidas/uso terapêutico , Adulto , Animais , Azetidinas/farmacologia , Células Cultivadas , Eosinofilia/induzido quimicamente , Eosinofilia/imunologia , Eosinófilos/fisiologia , Feminino , Humanos , Janus Quinase 1/imunologia , Janus Quinase 2/imunologia , Inibidores de Janus Quinases/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Purinas/farmacologia , Pirazóis/farmacologia , Pyroglyphidae/imunologia , Sulfonamidas/farmacologia , Adulto Jovem
7.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063947

RESUMO

Endocannabinoids (eCBs) are lipid-based retrograde messengers with a relatively short half-life that are produced endogenously and, upon binding to the primary cannabinoid receptors CB1/2, mediate multiple mechanisms of intercellular communication within the body. Endocannabinoid signaling is implicated in brain development, memory formation, learning, mood, anxiety, depression, feeding behavior, analgesia, and drug addiction. It is now recognized that the endocannabinoid system mediates not only neuronal communications but also governs the crosstalk between neurons, glia, and immune cells, and thus represents an important player within the neuroimmune interface. Generation of primary endocannabinoids is accompanied by the production of their congeners, the N-acylethanolamines (NAEs), which together with N-acylneurotransmitters, lipoamino acids and primary fatty acid amides comprise expanded endocannabinoid/endovanilloid signaling systems. Most of these compounds do not bind CB1/2, but signal via several other pathways involving the transient receptor potential cation channel subfamily V member 1 (TRPV1), peroxisome proliferator-activated receptor (PPAR)-α and non-cannabinoid G-protein coupled receptors (GPRs) to mediate anti-inflammatory, immunomodulatory and neuroprotective activities. In vivo generation of the cannabinoid compounds is triggered by physiological and pathological stimuli and, specifically in the brain, mediates fine regulation of synaptic strength, neuroprotection, and resolution of neuroinflammation. Here, we review the role of the endocannabinoid system in intrinsic neuroprotective mechanisms and its therapeutic potential for the treatment of neuroinflammation and associated synaptopathy.


Assuntos
Endocanabinoides/metabolismo , Fatores Imunológicos/metabolismo , Inflamação/metabolismo , Neuroproteção/fisiologia , Animais , Humanos , Neuroglia/metabolismo , Neurônios/metabolismo , Transdução de Sinais
8.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919453

RESUMO

Eosinophils are important effector cells involved in allergic inflammation. When stimulated, eosinophils release a variety of mediators initiating, propagating, and maintaining local inflammation. Both, the activity and concentration of secreted and cytosolic phospholipases (PLAs) are increased in allergic inflammation, promoting the cleavage of phospholipids and thus the production of reactive lipid mediators. Eosinophils express high levels of secreted phospholipase A2 compared to other leukocytes, indicating their direct involvement in the production of lipid mediators during allergic inflammation. On the other side, eosinophils have also been recognized as crucial mediators with regulatory and homeostatic roles in local immunity and repair. Thus, targeting the complex network of lipid mediators offer a unique opportunity to target the over-activation and 'pro-inflammatory' phenotype of eosinophils without compromising the survival and functions of tissue-resident and homeostatic eosinophils. Here we provide a comprehensive overview of the critical role of phospholipase-derived lipid mediators in modulating eosinophil activity in health and disease. We focus on lysophospholipids, polyunsaturated fatty acids, and eicosanoids with exciting new perspectives for future drug development.


Assuntos
Eicosanoides/metabolismo , Eosinófilos/imunologia , Ácidos Graxos Insaturados/metabolismo , Lisofosfolipídeos/metabolismo , Fosfolipases/metabolismo , Animais , Eosinófilos/metabolismo , Eosinófilos/patologia , Humanos
9.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922158

RESUMO

Eosinophils are key components of our host defense and potent effectors in allergic and inflammatory diseases. Once recruited to the inflammatory site, eosinophils release their cytotoxic granule proteins as well as cytokines and lipid mediators, contributing to parasite clearance but also to exacerbation of inflammation and tissue damage. However, eosinophils have recently been shown to play an important homeostatic role in different tissues under steady state. Despite the tremendous progress in the treatment of eosinophilic disorders with the implementation of biologics, there is an unmet need for novel therapies that specifically target the cytotoxic effector functions of eosinophils without completely depleting this multifunctional immune cell type. Recent studies have uncovered several endogenous molecules that decrease eosinophil migration and activation. These include short chain fatty acids (SCFAs) such as butyrate, which are produced in large quantities in the gastrointestinal tract by commensal bacteria and enter the systemic circulation. In addition, high-density lipoprotein-associated anti-inflammatory apolipoproteins have recently been shown to attenuate eosinophil migration and activation. Here, we focus on the anti-pathogenic properties of SCFAs and apolipoproteins on eosinophil effector function and provide insights into the potential use of SCFAs and apolipoproteins (and their mimetics) as effective agents to combat eosinophilic inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Apolipoproteínas/farmacologia , Eosinofilia/complicações , Eosinófilos/patologia , Ácidos Graxos Voláteis/farmacologia , Inflamação/tratamento farmacológico , Animais , Humanos , Inflamação/etiologia , Inflamação/patologia
10.
Br J Pharmacol ; 178(5): 1234-1248, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450054

RESUMO

BACKGROUND AND PURPOSE: Miltefosine is an alkylphosphocholine drug with proven effectiveness against various types of parasites and cancer cells. Miltefosine is not only able to induce direct parasite killing but also modulates host immunity, for example by reducing the severity of allergies in patients. To date, there are no reports on the effect of miltefosine on eosinophils, central effector cells involved in allergic inflammation. EXPERIMENTAL APPROACH: We tested the effect of miltefosine on the activation of human eosinophils and their effector responses in vitro and in mouse models of eosinophilic migration and ovalbumin-induced allergic lung inflammation. KEY RESULTS: The addition of miltefosine suppressed several eosinophilic effector reactions such as CD11b up-regulation, degranulation, chemotaxis and downstream signalling. Miltefosine significantly reduced the infiltration of immune cells into the respiratory tract of mice in an allergic cell recruitment model. Finally, in a model of allergic inflammation, treatment with miltefosine resulted in an improvement of lung function parameters. CONCLUSION AND IMPLICATIONS: Our observations suggest a strong modulatory activity of miltefosine in the regulation of eosinophilic inflammation in vitro and in vivo. Our data underline the potential efficacy of miltefosine in the treatment of allergic diseases and other eosinophil-associated disorders and may raise important questions regarding the immunomodulatory effect of miltefosine in patients treated for leishmania infections.


Assuntos
Parasitos , Preparações Farmacêuticas , Animais , Eosinófilos , Humanos , Inflamação , Camundongos , Ovalbumina , Fosforilcolina/análogos & derivados
11.
Oncoimmunology ; 9(1): 1776059, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32923137

RESUMO

In many types of cancer, presence of eosinophils in tumors correlate with an improved disease outcome. In line with this, activated eosinophils have been shown to reduce tumor growth in colorectal cancer (CRC). Interleukin (IL)-33 has recently emerged as a cytokine that is able to inhibit the development of tumors through eosinophils and other cells of the tumor microenvironment thereby positively influencing disease progress. Here, we asked whether eosinophils are involved in the effects of IL-33 on tumor growth in CRC.In models of CT26 cell engraftment and colitis-associated CRC, tumor growth was reduced after IL-33 treatment. The growth reduction was absent in eosinophil-deficient ΔdblGATA-1 mice but was restored by adoptive transfer of ex vivo-activated eosinophils indicating that the antitumor effect of IL-33 depends on the presence of eosinophils. In vitro, IL-33 increased the expression of markers of activation and homing in eosinophils, such as CD11b and Siglec-F, and the degranulation markers CD63 and CD107a. Increased expression of Siglec-F, CD11b and CD107a was also seen in vivo in eosinophils after IL-33 treatment. Viability and cytotoxic potential of eosinophils and their migration properties toward CCL24 were enhanced indicating direct effects of IL-33 on eosinophils. IL-33 treatment led to increased levels of IL-5 and CCL24 in tumors.Our data show that the presence of eosinophils is mandatory for IL-33-induced tumor reduction in models of CRC and that the mechanisms include eosinophil recruitment, activation and degranulation. Our findings also emphasize the potential use of IL-33 as an adjuvants in CRC immunotherapy. Abbreviations: AOM: azoxymethane; bmRPMI: bone marrow RPMI; CRC: colorectal cancer; CFSE: carboxyfluorescein succinimidyl ester; DSS: dextran sulfate sodium; EPX: eosinophil peroxidase; INF-γ: interferon gamma; ILC: innate lymphoid cell; IL-33: interleukin-33; IL-5: interleukin-5; MDSC: myeloid derived suppressor cells; NK cells: natural killer cells; P/S: penicillin/streptomycin; rm: recombinant mouse; T regs: regulatory T cells; TATE: tumor associated tissue eosinophilia; TNF-α: tumor necrosis factor alpha.


Assuntos
Neoplasias Colorretais , Eosinófilos , Interleucina-33 , Animais , Neoplasias Colorretais/tratamento farmacológico , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microambiente Tumoral
13.
Artigo em Inglês | MEDLINE | ID: mdl-32171907

RESUMO

Eosinophils are important multifaceted effector cells involved in allergic inflammation. Following allergen challenge, eosinophils and other immune cells release secreted phospholipases, generating lysophosphatidylcholines (LPCs). LPCs are potent lipid mediators, and serum levels of LPCs associate with asthma severity, suggesting a regulatory activity of LPCs in asthma development. As of yet, the direct effects of LPCs on eosinophils remain unclear. In the present study, we tested the effects of the major LPC species (16:0, 18:0 and 18:1) on eosinophils isolated from healthy human donors. Addition of saturated LPCs in the presence of albumin rapidly disrupted cholesterol-rich nanodomains on eosinophil cell membranes and suppressed multiple eosinophil effector responses, such as CD11b upregulation, degranulation, chemotaxis, and downstream signaling. Furthermore, we demonstrate in a mouse model of allergic cell recruitment, that LPC treatment markedly reduces immune cell infiltration into the lungs. Our observations suggest a strong modulatory activity of LPCs in the regulation of eosinophilic inflammation in vitro and in vivo.


Assuntos
Quimiotaxia , Eosinófilos/efeitos dos fármacos , Hipersensibilidade/metabolismo , Lisofosfatidilcolinas/farmacologia , Animais , Antígeno CD11b/metabolismo , Células Cultivadas , Eosinófilos/metabolismo , Eosinófilos/fisiologia , Humanos , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
14.
Allergy ; 75(2): 392-402, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31408538

RESUMO

BACKGROUND: Recent studies pointed to a crucial role for apolipoproteins in the pathogenesis of inflammatory diseases. However, the role of apolipoprotein-IV (ApoA-IV) in allergic inflammation has not been addressed thoroughly thus far. OBJECTIVE: Here, we explored the anti-inflammatory effects and underlying signaling pathways of ApoA-IV on eosinophil effector function in vitro and in vivo. METHODS: Migratory responsiveness, Ca2+ -flux and apoptosis of human peripheral blood eosinophils were assessed in vitro. Allergen-driven airway inflammation was assessed in a mouse model of acute house dust mite-induced asthma. ApoA-IV serum levels were determined by ELISA. RESULTS: Recombinant ApoA-IV potently inhibited eosinophil responsiveness in vitro as measured by Ca2+ -flux, shape change, integrin (CD11b) expression, and chemotaxis. The underlying molecular mechanism involved the activation of Rev-ErbA-α and induced a PI3K/PDK1/PKA-dependent signaling cascade. Systemic application of ApoA-IV prevented airway hyperresponsiveness (AHR) and airway eosinophilia in mice following allergen challenge. ApoA-IV levels were decreased in serum from allergic patients compared to healthy controls. CONCLUSION: Our data suggest that ApoA-IV is an endogenous anti-inflammatory protein that potently suppresses effector cell functions in eosinophils. Thus, exogenously applied ApoA-IV may represent a novel pharmacological approach for the treatment of allergic inflammation and other eosinophil-driven disorders.


Assuntos
Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/sangue , Apolipoproteínas A/administração & dosagem , Apolipoproteínas A/sangue , Asma/sangue , Asma/tratamento farmacológico , Rinite/sangue , Sinusite/sangue , Adolescente , Adulto , Alérgenos/efeitos adversos , Animais , Anti-Inflamatórios/farmacologia , Apolipoproteínas A/farmacologia , Apoptose/efeitos dos fármacos , Asma/etiologia , Cálcio/metabolismo , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Modelos Animais de Doenças , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Pyroglyphidae/imunologia , Adulto Jovem
15.
Biochem Pharmacol ; 174: 113783, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31881191

RESUMO

Neuroinflammation plays a prominent role in the onset of demyelinating diseases, major depressive disorder and delayed neurodegeneration. An open question remains whether pharmacological suppression of inflammation can effectively reduce the progression of these states. Bioactive lipid mediators such as N-acylethanolamines (NAEs) have an anti-inflammatory activity and are of pharmacological interest due to their endogenous on-demand production and the existence of distinct biological targets in humans and animals. Here we demonstrate for the first time, that treatment with stearoylethanolamide (SEA), a prevailing endogenously formed NAE, is neuroprotective against LPS-induced neuroinflammation in C57BL/6 male mice. SEA restricted the spreading of peripheral inflammation to the brain, and averted the activation of resident microglia and leukocyte trafficking to the brain parenchyma. Treatment with SEA per se increased the neuronal expression of cannabinoid receptors CB1/2 and brain levels of the most potent endogenous CB1/2 agonist 2-arachidonoylglycerol in vivo. SEA enhanced the amplitude of synaptic vesicle release, supported the balanced signal-to-noise ratio in glutamate- and GABAergic neurotransmission and decreased the excitotoxic risk associated with higher extracellular glutamate levels under neuroinflammation. The interference of SEA with the endocannabinoid system and presynaptic neurotransmitter release may represent an intrinsic neuroprotective mechanism that is triggered by inflammation and glutamate excitotoxicity. Thus, our data allows to consider SEA for the preventive therapy of acute and late-onset neuroinflammation-associated synaptic dysfunction and neurodegeneration.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encefalite/prevenção & controle , Endocanabinoides/metabolismo , Fármacos Neuroprotetores/farmacologia , Ácidos Esteáricos/farmacologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Encefalite/imunologia , Encefalite/metabolismo , Inflamação , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Transdução de Sinais
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1280-1292, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185305

RESUMO

Despite strong evidence that high-density lipoproteins (HDLs) modulate the immune response, the role of HDL in allergies is still poorly understood. Many patients with allergic rhinitis (AR) develop a late-phase response, characterized by infiltration of monocytes and eosinophils into the nasal submucosa. Functional impairment of HDL in AR-patients may insufficiently suppress inflammation and cell infiltration, but the effect of AR on the composition and function of HDL is not understood. We used apolipoprotein (apo) B-depleted serum as well as isolated HDL from AR-patients (n = 43) and non-allergic healthy controls (n = 20) for detailed compositional and functional characterization of HDL. Both AR-HDL and apoB-depleted serum of AR-patients showed decreased anti-oxidative capacity and impaired ability to suppress monocyte nuclear factor-κB expression and pro-inflammatory cytokine secretion, such as interleukin (IL)-4, IL-6, IL-8, tumor necrosis factor alpha and IL-1 beta. Sera of AR-patients showed decreased paraoxonase and cholesteryl-ester transfer protein activities, increased lipoprotein-associated phospholipase A2 activity, while lecithin-cholesterol acyltransferase activity and cholesterol efflux capacity were not altered. Surprisingly, apoB-depleted serum and HDL from AR-patients showed an increased ability to suppress eosinophil effector responses upon eotaxin-2/CCL24 stimulation. Mass spectrometry and biochemical analyses showed reduced levels of apoA-I and phosphatidylcholine, but increased levels of apoA-II, triglycerides and lyso-phosphatidylcholine in AR-HDL. The changes in AR-HDL composition were associated with altered functional properties. In conclusion, AR alters HDL composition linked to decreased anti-oxidative and anti-inflammatory properties but improves the ability of HDL to suppress eosinophil effector responses.


Assuntos
Lipoproteínas HDL/imunologia , Rinite Alérgica/imunologia , Adolescente , Adulto , Criança , Citocinas/análise , Citocinas/imunologia , Feminino , Humanos , Imunoglobulina E/imunologia , Lipoproteínas HDL/análise , Masculino , Monócitos/imunologia , Adulto Jovem
17.
J Allergy Clin Immunol ; 144(3): 764-776, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31082458

RESUMO

BACKGROUND: Lung eosinophilia is a hallmark of asthma, and eosinophils are believed to play a crucial role in the pathogenesis of allergic inflammatory diseases. Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are produced in high amounts in the gastrointestinal tract by commensal bacteria and can be absorbed into the bloodstream. Although there is recent evidence that SCFAs are beneficial in allergic asthma models, the effect on eosinophils has remained elusive. OBJECTIVE: The role of SCFAs was investigated in human eosinophil function and a mouse model of allergic asthma. METHODS: Eosinophils were purified from self-reported allergic or healthy donors. Migration, adhesion to the endothelium, and eosinophil survival were studied in vitro. Ca2+ flux, apoptosis, mitochondrial membrane potential, and expression of surface markers were determined by using flow cytometry and in part by using real-time PCR. Allergic airway inflammation was assessed in vivo in an ovalbumin-induced asthma model by using invasive spirometry. RESULTS: For the first time, we observed that SCFAs were able to attenuate human eosinophils at several functional levels, including (1) adhesion to the endothelium, (2) migration, and (3) survival. These effects were independent from GPR41 and GPR43 but were accompanied by histone acetylation and mimicked by trichostatin A, a pan-histone deacetylase inhibitor. In vivo butyrate ameliorated allergen-induced airway and lung eosinophilia, reduced type 2 cytokine levels in bronchial fluid, and improved airway hyperresponsiveness in mice. CONCLUSION: These in vitro and in vivo findings highlight the importance of SCFAs, especially butyrate as a promising therapeutic agent in allergic inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Butiratos/farmacologia , Butiratos/uso terapêutico , Eosinófilos/efeitos dos fármacos , Eosinofilia Pulmonar/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Asma/genética , Asma/imunologia , Movimento Celular/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Eosinofilia Pulmonar/genética , Eosinofilia Pulmonar/imunologia
18.
Dig Dis Sci ; 64(10): 2806-2814, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30989466

RESUMO

BACKGROUND: The prostaglandin D2 receptor DP2 has been implicated in eosinophil infiltration and the development of eosinophilic esophagitis (EoE). AIMS AND METHODS: In this study, we investigated an involvement of PGE2 (EP1-EP4) and PGD2 (DP1) receptors in EoE by measuring their expression in peripheral blood eosinophils and esophageal mucosal biopsies of EoE patients and by performing migration and adhesion assays with eosinophils from healthy donors. RESULTS: Expression of EP2 and EP4, but not EP1 and EP3, was decreased in blood eosinophils of patients with EoE vs. control subjects. Adhesion of eosinophils to esophageal epithelial cells was decreased by EP2 receptor agonist butaprost and EP4 agonist ONO-AE1-329, whereas DP1 agonist BW245C increased adhesion. In chemotaxis assays with supernatant from human esophageal epithelial cells, only ONO-AE1-329 but not butaprost or BW245C inhibited the migration of eosinophils. Expression of EP and DP receptors in epithelial cells and eosinophils was detected in sections of esophageal biopsies from EoE patients by immunohistochemistry. qPCR of biopsies from EoE patients revealed that gene expression of EP4 and DP1 was the highest among PGE2 and PGD2 receptors. Esophageal epithelial cells in culture showed high gene expression for EP2 and EP4. Activation of EP2 and EP4 receptors decreased barrier integrity of esophageal epithelial cells in impedance assays. CONCLUSIONS: Activation of EP2 and EP4 receptors may inhibit eosinophil recruitment to the esophageal mucosa. However, their activation could negatively affect esophageal barrier integrity suggesting that eosinophilic rather than epithelial EP2 and EP4 have a protective role in EoE.


Assuntos
Esofagite Eosinofílica , Eosinófilos , Mucosa Esofágica , Receptores de Prostaglandina E Subtipo EP2 , Receptores de Prostaglandina E Subtipo EP4 , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Adesão Celular , Ensaios de Migração Celular/métodos , Células Cultivadas , Esofagite Eosinofílica/sangue , Esofagite Eosinofílica/metabolismo , Esofagite Eosinofílica/patologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Mucosa Esofágica/efeitos dos fármacos , Mucosa Esofágica/metabolismo , Mucosa Esofágica/patologia , Humanos , Imuno-Histoquímica , Éteres Metílicos/farmacologia , Projetos Piloto , Prostaglandinas E Sintéticas/farmacologia , Receptores de Prostaglandina E Subtipo EP2/agonistas , Receptores de Prostaglandina E Subtipo EP2/análise , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/análise
19.
Biochim Biophys Acta Gen Subj ; 1862(12): 2701-2713, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30251660

RESUMO

BACKGROUND: Neurosecretion is the multistep process occurring in separate spatial and temporal cellular boundaries which complicates its comprehensive analysis. Most of the research are focused on one distinct stage of synaptic vesicle recycling. Here, we describe approaches for complex analysis of synaptic vesicle (SV) endocytosis and separate steps of exocytosis at the level of presynaptic bouton and highly purified SVs. METHODS: Proposed fluorescence-based strategies and analysis of neurotransmitter transport provided the advantages in studies of exocytosis steps. We evaluated SV docking/tethering, their Ca2+-dependent fusion and release of neurotransmitters gamma-aminobutyric acid (GABA) and glutamate in two animal models. RESULTS: Approaches enabled us to study: 1) endocytosis/Ca2+-dependent release of fluorescent carbon nanodots (CNDs) during stimulation of nerve terminals; 2) the action of levetiracetam, modulator of SV glycoprotein SV2, on fusion competence of SVs and stimulated release of GABA and glutamate; 3) impairments of several steps of neurosecretion under vitamin D3 deficiency. CONCLUSIONS: Our algorithm enabled us to verify the method validity for multidimensional analysis of SV turnover. By increasing SV docking and the size of readily releasable pool (RRP), levetiracetam is able to selectively enhance the stimulated GABA secretion in hippocampal neurons. Findings suggest that SV2 regulates RRP through impact on the number of docked/primed SVs. GENERAL SIGNIFICANCE: Methodology can be widely applied to study the stimulated neurosecretion in presynapse, regulation of SV docking, their Ca2+-dependent fusion with target membranes, quantitative analysis of expression of neuron-specific proteins, as well as for testing the efficiency of pre-selected designed neuroactive substances.


Assuntos
Levetiracetam/farmacologia , Neurossecreção/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Colecalciferol/deficiência , Endocitose , Exocitose , Fluorescência , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Modelos Animais , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Deficiência de Vitamina D/fisiopatologia , Ácido gama-Aminobutírico/metabolismo
20.
J Leukoc Biol ; 104(1): 159-171, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29607536

RESUMO

Prostaglandin (PG) D2 is the ligand for the G-protein coupled receptors DP1 (D-type prostanoid receptor 1) and DP2 (also known as chemoattractant receptor homologous molecule, expressed on Th2 cells; CRTH2). Both, DP1 and DP2 are expressed on the cellular surface of eosinophils; although it has become quite clear that PGD2 induces eosinophil migration mainly via DP2 receptors, the role of DP1 in eosinophil responses has remained elusive. In this study, we addressed how DP1 receptor signaling complements the pro-inflammatory effects of DP2. We found that PGD2 prolongs the survival of eosinophils via a DP1 receptor-mediated mechanism that inhibits the onset of the intrinsic apoptotic cascade. The DP1 agonist BW245c prevented the activation of effector caspases in eosinophils and protected mitochondrial membranes from depolarization which-as a consequence-sustained viability of eosinophils. DP1 activation in eosinophils enhanced the expression of the anti-apoptotic gene BCL-XL , but also induced pro-inflammatory genes, such as VLA-4 and CCR3. In HEK293 cells that overexpress recombinant DP1 and/or DP2 receptors, activation of DP1, but not DP2, delayed cell death and stimulated proliferation, along with induction of serum response element (SRE), a regulator of anti-apoptotic, early-response genes. We conclude that DP1 receptors promote the survival via SRE induction and induction of pro-inflammatory genes. Therefore, targeting DP1 receptors, along with DP2, may contribute to anti-inflammatory therapy in eosinophilic diseases.


Assuntos
Apoptose/fisiologia , Eosinófilos/metabolismo , Receptores de Prostaglandina/metabolismo , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...